Designer's™ Data Sheet TMOS E-FET ™ **High Energy Power FET D2PAK** for Surface Mount N–Channel Enhancement–Mode Silicon Gate

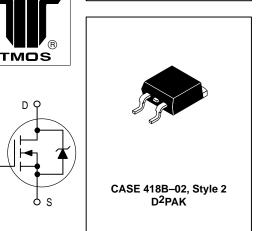
The D²PAK package has the capability of housing a larger die than any existing surface mount package which allows it to be used in applications that require the use of surface mount components with higher power and lower RDS(on) capabilities. This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced TMOS E-FET is designed to withstand high energy in the avalanche and commutation modes. This new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters, PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- **Robust High Voltage Termination** •
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- · Diode is Characterized for Use in Bridge Circuits
- IDSS and VDS(on) Specified at Elevated Temperature
- Short Heatsink Tab Manufactured Not Sheared
- Specifically Designed Leadframe for Maximum Power Dissipation
- Available in 24 mm 13-inch/800 Unit Tape & Reel, Add T4 Suffix to Part Number

MAXIMUM RATINGS (T I = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	VDSS	500	Vdc	
Drain-to-Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	500	Vdc	
Gate-to-Source Voltage – Continuous – Non-repetitive (tp \leq 10 ms)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk	
Drain Current — Continuous @ $T_C = 25^{\circ}C$ — Continuous @ $T_C = 100^{\circ}C$ — Single Pulse (tp $\leq 10 \ \mu$ s)	I _D I _D I _{DM}	8.0 5.0 32	Adc Apk	
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	125 1.0	Watts W/°C	
Operating and Storage Temperature Range	TJ, Tstg	-55 to 150	°C	
Single Pulse Drain–to–Source Avalanche Energy – STARTING T _J = 25° C (V _{DD} = 25 Vdc, V _{GS} = 10 Vdc, PEAK I _L = 8.0 Apk, L = 16 mH, R _G = 25Ω)	E _{AS}	510	mJ	
Thermal Resistance – Junction–to–Case – Junction–to–Ambient – Junction–to–Ambient (1)	$\begin{matrix} R_{\theta JC} \\ R_{\theta JA} \\ R_{\theta JA} \end{matrix}$	1.0 62.5 50	°C/W	
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 5 sec.	т	260	°C	

(1) When surface mounted to an FR4 board using the minimum recommended pad size.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

E-FET and Designer's are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

REV 1

TMOS POWER FET 8.0 AMPERES 500 VOLTS RDS(on) = 0.8 OHM

n

MTB8N50E

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•				
Drain–to–Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)		V _(BR) DSS	500 —	 500		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{DS} = 500 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 400 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C}$)		IDSS			10 100	μAdc
Gate–Body Leakage Current ($V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)		IGSS	_	_	100	nAdc
ON CHARACTERISTICS (1)		•				
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ Threshold Temperature Coefficient (Negative)		VGS(th)	2.0	3.0 6.3	4.0 —	Vdc mV/°C
Static Drain–to–Source On–Resistance $(V_{GS} = 10 \text{ Vdc}, I_D = 4.0 \text{ Adc})$		R _{DS(on)}	_	0.6	0.8	Ohms
$\begin{array}{l} \text{Drain-to-Source On-Voltage (V_{GS})}\\ (I_D=8.0 \text{ Adc})\\ (I_D=4.0 \text{ Adc}, \text{T}_J=125^{\circ}\text{C}) \end{array}$	₃ = 10 Vdc)	V _{DS(on)}			7.2 6.4	Vdc
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 4.0 Adc)		9FS	4.0	_	_	mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{iss}		1450	1680	pF
Output Capacitance		C _{oss}		190	264	
Transfer Capacitance		C _{rss}	—	45.4	144	
SWITCHING CHARACTERISTICS (2)					
Turn–On Delay Time		^t d(on)		15	50	ns
Rise Time	(R _{Gon} = 9.1 Ω)	t _r		33	72	
Turn–Off Delay Time	$(\pi G_{OD} = 9.1 \text{ sz})$	^t d(off)		40	150	
Fall Time		tf	—	32	60	
Gate Charge (see Figure 8)	(V _{DS} = 400 Vdc, I _D = 8.0 Adc, V _{GS} = 10 Vdc)	QT		40	64	nC
		Q ₁		8.0		
		Q ₂		17		
		Q ₃		17.3		
SOURCE-DRAIN DIODE CHARAC	TERISTICS			-		
Forward On–Voltage		VSD				Vdc
$(I_S = 8.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$			—	1.2	2.0	
$(I_S = 8.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J =$: 125°C)		—	1.1	—	
Reverse Recovery Time	(I _S = 8.0 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/µs)	t _{rr}		320		ns
		ta	_	179	—	
		tb	_	141	_	
Reverse Recovery Stored Charge		Q _{RR}	—	3.0	—	μC
INTERNAL PACKAGE INDUCTANC	E					
Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die)		LD	_	4.5	_	nH
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)		LS				

(1) Pulse rest. Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.
(2) Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

RDS(on), DRAIN-TO-SOURCE RESISTANCE (OHMS)

0.90

0.85

0.80

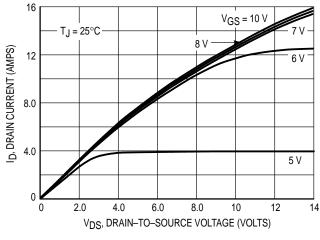
0.75

0.70

0.65

0.60

0.55


0

TJ = 25°C

2.0

4.0

6.0



Figure 2. Transfer Characteristics

V_{GS} = 10 V

15 V

12

14

16

10

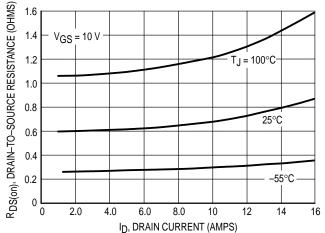
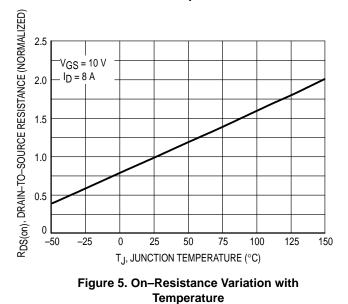
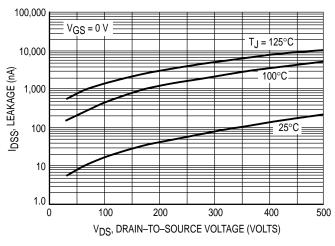



Figure 3. On–Resistance versus Drain Current and Temperature




and Gate Voltage

8.0

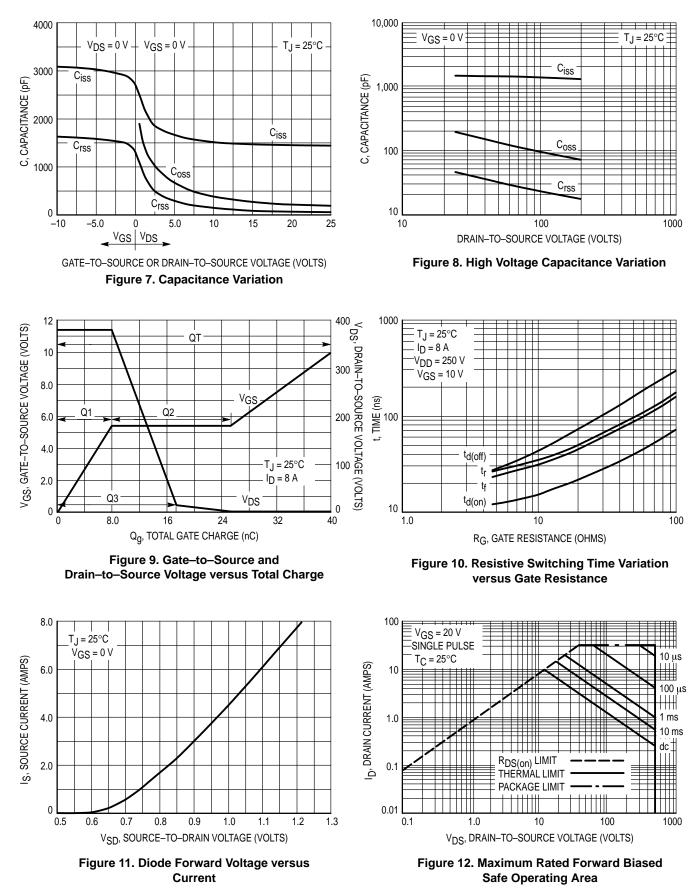

ID, DRAIN CURRENT (AMPS)

Figure 4. On-Resistance versus Drain Current

TYPICAL ELECTRICAL CHARACTERISTICS

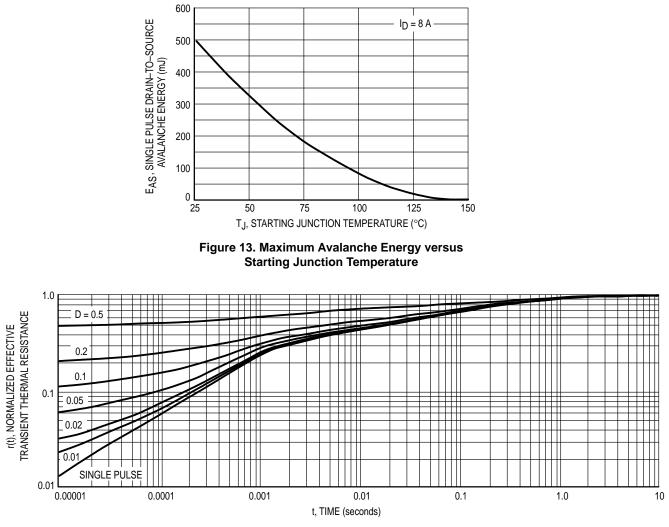
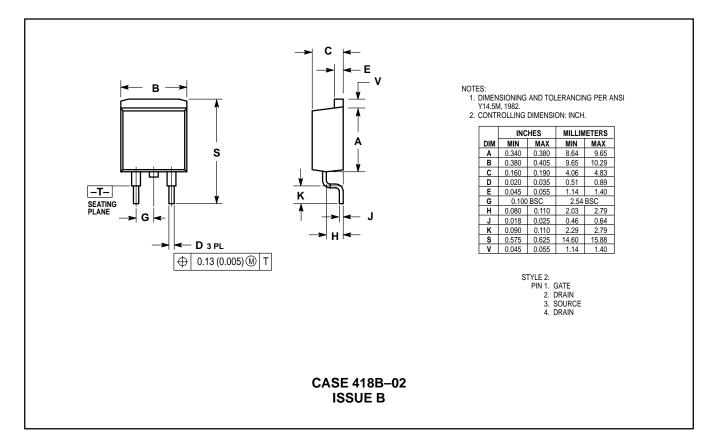



Figure 14. Thermal Response

MTB8N50E

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *w* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

 \Diamond

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

